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Slow flow through stationary random beds 
and suspensions of spheres 

By T. S .  LUNDGREN 

(Received 10 May 1971) 

Stokes flow through a random, moderately dense bed of spheres is treated by a 
generalization of Brinkman’s (1947) method, which is applicable to both station- 
ary beds and suspensions. For stationary beds, Darcy’s law with a permeability 
result similar to Brinkman’s is derived. For suspensions an effective viscosity 
p/( 1-260$) is found, where q5 is the volume fraction of spheres. Also, an expression 
for the settling velocity is derived. 

1. Introduction 
Brinkman (1947), considering the viscous force exerted on a dense swarm of 

particles by a fluid flowing through them, introduced a very nice idea. Since the 
force on a single particle in a slow stream is calculated from the Stokes-flow velo- 
city field, and the flow through a swarm of particles is described by Darcy’s 
empirical equation for flow through a porous mass, Brinkman reasoned that the 
force on a particle situated in a swarm of particles could be calculated as if it 
were a solid particle imbedded in a porous mass. He represented the porous 
mass by modifying Stokes’s equation, adding a Darcy resistance term to it, so that 
the effect of all the other particles is treated in an average sense. This method 
has been received with some scepticism, because of the empirical nature of 
Darcy’s equation. The method has been extended recently by Spielman & Goren 
(1968) to the flow through fibrous media. 

Tam (1969) put Brinkman’s method in better theoretical shape, by treating 
the swarm of particles as point forces in Stokes flow and ensemble averaging over 
all particle positions except that of the primary particle. The resulting equation 
is the same as Brinkman’s and has the same basic fault. It is uncertain what one 
should use for the effective viscosity, the fluid viscosity, or a viscosity which 
accounts for the concentration of the particles as Einstein’s correction does for 
dilute suspensions. 

The present paper resolves the viscosity question and generalizes Brinkman’s 
method, so that it is applicable to the flow of suspensions, where the determination 
of the effective viscosity is the central problem. A statistical formulation due to 
Saffman (1971) is extended, and adapted to the present problem. The basic 
resulting equation is a Stokes equation with a statistically defmed resistance 
term. In  addition to a complete formulation of the problem for dense systems, 
the main contribution in this paper is the observation, after approximations 
similar to Brinkman’s, that the resistance term is not simply proportional to the 
velocity, but is of the form AU + BVW, which combines with the Stokes terms 
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274 T. 8. h n d g r e n  

to give an effective viscosity. One might have assumed the resistance of the more 
general form, AU + BV2U + CV4U + . . . , an infinite series in the operator V2, 
but it turns out, and was anticipated, that V4U is proportional to V2U, and so on. 
Therefore, the series can be summed to the form first cited. This is for a fixed bed. 
There is a similar but simpler conclusion for suspensions. 

In  $ 2 the statistical development is shown. (Some readers may find a physically 
oriented statistical reference, like Beran 1968, helpful.) This leads to a somewhat 
different formulation of Brinkman’s problem, and is compared with it in $3, 
disregarding the viscosity uncertainty. In $$4 and 5 the complete problem for 
fixed beds and suspensions is solved. 

2. Statistical formulation 
Consider very slow flow through a porous medium consisting of rigidly fixed 

or freely suspended solid particles. (We shall restrict to spheres later.) Let the 
orientation and geometry of these solids be specified statistically from an en- 
semble of possible geometries. For each member of this ensemble, the velocity 
field u is determined by the solution of Stokes’s equations, 

divu = 0, 

0 = -V(p--pg.r)+,uV2u, 

where p is the pressure and is the gravitational force per unit mass. These equa- 
tions are to be solved with u = us on solid boundaries, where U, is the surface 
velocity of the solids. us is zero for fixed particles and determined from a rigid- 
body motion for free particles, the translational velocity and angular velocity 
of the particles being found from conditions on the total force and torque. 

It is convenient to define a function H(r), following Saffman (1971), which is 
zero in solids and unity in fluid. H depends on the statistical parameters which 
specify the distribution of the solids. We denote by ( ) an ensemble average. The 
ensemble average of H(r), with r fixed, is 

(H) = I -# ,  (2.1) 

where # is the volume concentration of solids (1 - cj5 is the porosity). The average 
velocity at a point will be denoted by (u). In  taking this average, the point r 
will be in the fluid in some members of the ensemble and in solid in others. 
The velocity in the solids is either zero or given by the rigid-body motion of the 
particles. It is defined in either case. A mean velocity which is typical of the fluid, 
a mean interstitial velocity, may be defined by 

(Hu)I(H), 

which is the same as averaging only on those members of the ensemble for which 
the point is in the fluid. The velocity (u) is more useful, however. For stationary 
beds, it is the seepage velocity. Integrating it over an element of surface gives 
the average volume flow of the fluid across the surface. For suspensions it is the 
velocity of the composite material. Integrated over an element of surface, it  
gives the average volume flow of the composite. 
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The Newtonian stress, 

T& = - ( p - - p g . r ) a i , + p  (2.2) 

(2.3) 

is defined only in the fluid. An average stress, 
au, au. 

counts zero for points in the solid. Now use 

and 

In the last term in each of these relations, aH/8xj is a generalized function whichis 
zero everywhere except at  the solid boundary, where it is infinite. It is a unit 
normal times a Dirac delta function. On adding these tmn expressions, we find 

NOW add to this the same expression with i and j interchanged: 

The second term on the left averages only on those members of the ensemble 
which are in the solid. Since the velocity in the solids is at  most rigid-body motion, 
au,/ax,+ azl,lax, is zero there, so this term vanishes identically. Therefore, (2.3) 
becomes 

( H G j )  = - ( H ( p  - pg . r)) aij + p r*) ax, + %)) ax, . 

The quantity (HT) . iidS is the force which the Jluid on one side of the element 
iidS exerts on the Jluid on the other side, since in the averaging, the stress is 
counted as zero in solids. Since the quantity 

F = ( H P ) / ( H )  (2-9) 

is the mean static pressure in the fluid, (2.8) can be written 

(2.10) 

We make use of these results in the following way. From the trace of (2.7) and 
the continuity equation, we find 

From Stokes's equation, written as div T = 0, we find 

div(u) = 0. (2.11) 

(2.12) 0 = (HdivT) = div(HT)-(T.VH). 

Nowuse (2.8) and (2.11) toget 

0 = - V( 1 - q5) ( p  -pg.  r) +pV2(u)  - (T. V H ) .  (2.13) 

This compares with Saffman's (1971) equation (2.15). The last term on the right 
is the contribution from those members of the ensemble for which the point is on 

18-2 
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a solid boundary. It is a force density, the average force per unit volume which 
the solids exert on the fluid. This may be seen by integrating this term over a 
macroscopic volume. Making use of the delta function property of VH gives 

-/(T.VH)dr = - T.i idX , (S ) (2.14) 

where the surface integral is over all solid boundaries in the volume and ii is a 
unit normal directed into the fluid. The last integral is the average force which the 
solids in the volume exert on the fluid. In  the form in which (2.13) is written each 
term represents a force per unit volume on the fluid. In  particular, the first term 
is not Vp but V( 1 - 6) p ,  ( 1  - $) being the fluid fraction per unit area on which p 
acts. 

More progress can be made with a specific model for the porous medium. We xi11 
assume from now on that the medium is a collection of N identical spheres of 
radius a. Let the centres of these spheres be at rl, r2, ..., rN. Let PN(rl, r2, ..., rN) 
be a probability density for the location of the centres. For each member of the 
ensemble, the velocity field and H are functions of all of the rj’s. Ensemble 
averages are then computed from 

(G) = /G(rl, r2, ..., r,) PN(rl, r2, .. ., rN) drldr, ... dr,, (2.15) 

where G is a representative function. A probability density for a typical single 
particle is defined by 

Pl(rl) = P, (rl, r2, .. ., rAr) dr,dr, ... drN, (2.16) 

i.e. by integrating over the positions of all the other particles. For an ‘overlap- 

A more realistic probability density must account for the mutual exclusiveness 
of the spheres. Since the spheres are identical, the number density n (defined 
such that ndr is the ensemble average of the number of particles with centres in 

volume dr) is given by n(r) = NP,(r). (2.17) 

The function H is given explicitly by 

s 
ping sphere ’ model P N  = Pl(r1) P1@2)*- 4 h - N ) .  

N 

j=1 
H(r;rl,r2, ... rN) = 1-  x Z ( a - \ r - r j l ) ,  (2.18) 

where 2 is the Heaviside step function, defined to be zero when its argument is 
negative, one otherwise. With this expression for H we get 

(2.19) 
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relating the porosity to the number density. If the particles are uniformly dis- 
tributed, so that n is uniform, this gives 

an obvious result. 
We shall also need to consider conditional probability densities. Suppose 

from the ensemble of particles we single out the sub-ensemble for which one 
particle, particle 1 say, has the same position in each member. In  this sub- 
ensemble, particle 1 is a common solid boundary. The probability density for 
the remaining particles, a conditional probability, is 

q5 = $p3n,  (2.20) 

PNPl, r2, * - .  rIV)/P,(r,). (2.21) 

We shall denote sub-ensemble averages by an angle bracket with subscript 1 : 

The following items are of interest. The probability density of a typical particle 
in the sub-ensemble, particle 2 say, is 

(2.23) 

(2.24) 

For particles which are randomly distributed except for the constraint of mutual 
exclusiveness, P2 (r,, ra) is a function which is zero when Ir, - r21 < 2u, and equals 
Pl(rl) Pl(r2) when the particles are not this close. The density n, is then simply an 
empty sphere of radius 2u surrounding particle 1, and uniform density n outside 
this. More complicated distributions can arise with interacting particles, where 
present position and densities of particles are determined by their motion, and the 
distribution function cannot be chosen at  will but must satisfy an appropriate 
modified Liouville equation. 

Referring now to (2.13), the term (T. V H )  can be put in more explicit form by 

using / N \ 

where 6 is the Dirac delta function. Then 

r-r N 
(T.VH) = C /P,(r, ,..., r N ) 8 ( l r - r j l - u ) T . d d r  l...drN 

i=1 Ir-r51 
= N &,&(/r-rJ -a)T.- r-r, dr,. . .dr, s lr-rll 

(2.25) 

(2.26) 

where the second line follows because P,v is invariant to interchange of particles, 
the particles being identical. In  the third line, we have used the definition of 
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number density and conditional average. Finally, we note that because of the 
delta function, the volume integral may be converted to a surface integral. De- 
noting by fi = r - r,/ 1 r - rl(, the unit outward normal to the particle, the only 
points which contribute to the integral are rl = r - ufi for all fi on the unit sphere. 
Let dfi be an element of solid angle on the unit sphere. Then 

(T.VH) = 1 n(r - af i )  (T), . fia2 dii. (2.27) 

This requires some explanation. Recall that r is fixed in ensemble averaging. 
(T), . fi is the average traction at  r when a particle is known to be centred at  r,. 
(It is a function of two arguments rl and r.) Since rl = r - afi, the point r is on 
the surface of this sphere. The integration, then, is a weighted (by n) average 
traction at  a point, the average being over the positions of all spheres which touch 
the p i n t .  In  the case of most interest, the number density is uniform, and (2.13) 
becomes 

0 = V(1-q5) @-&.I-) +,uV2(u)-na2 (T),.fidfi. (2.28) 

(In integrald like this, we shall always indicate both arguments of (T),, by sub- 
scripts on the integral.) To compute (T),, we have, by a modification of (2.10), 

r1 =r -uE, r fixed 

lrL=r-uf i ,r  fixed 

(2.29) 

(since 
pressure and velocity when particle 1 has a known position. 

probability in place of PN. The equivalent of (2.13) is 

-- 0 at  the surface of the sphere), which requires the average static 

An equation for ( u ) ~  may be obtained by the above process, using a conditional 

0 = -V(1-q51)(~1-pg.r)+pV2(u)1-(T.VH)1. (2.30) 

The equivalent of (2.27) is 

(T.VH), = jr - nl(r-ufi) (T),,,.fia2dfi, (2.31) 

where particle 1 is fixed, and the centre of particle 2, the field particle, is at 
r - ufi. This differs from (2.27), because of the extremely non-uniform density 
field n, caused by the presence of particle 1. nl(r - afi) is zero for the range of fi 
for which Ir-r,-afil < 2a, i.e. for all those positions of particle 2 that are 
excluded by the presence of particle 1. The stress (T)l,2 that occurs here de- 
pends on (u),,,, the average velocity field when the positions of two particles 
are known. We can continue this process, deriving an equation for (u),,~. It 
would have a resistance term which depends on the average velocity when three 
particles are fixed, (u ) , ,~ ,~ ,  and so on. This leads to a hierarchy of modified 
Stokes equations. 

We shall close this hierarchy of equations by a simple proposal, which general- 
izes an idea due to Brinkman (1947). Restricting to uniform number density, we 
assume that 

(T),.fidii = P((u)),  (2.32) 

,-r-uE, r1 fixed, r fixed 

na2.1r, =r -ua, r fixed 



Slow $ow through random beds of s9heres 279 

where g((u) )  is a linear functional of (u}, to be determined. Then (u) must 
satisfy div( U) = 0, 

(2.33) 

where q5 is constant because of the uniform number density. Further, w-e assume 
that ( u ) ~  and p1 satisfy the very same equations, with the same constant 4, as if 
pa.rticle 1 were a solid inclusion in a porous material. Since (u), should satisfy 
(2.30), it is clear that several approximations have been made. First 9f all 4, 
has been replaced by q5 neglecting the fact that particle 1 excludes all spheres 
which would overlap it. q5, should be zero in a sphere of radius 2a surrcunding 
particle 1.  

Second, we have assumed that (T.VH),, given by (2.31) is the same func- 
tional of (u), as (T . VH) is of (u). This requires that n1 be replaced by n, again 
neglecting the mutual exclusiveness of the particles. While these are rather 
heavy approximations, they are at  least pinpointed here, and the resulting 
imagery is clear. 

The problem now is to solve (2.33) for ( u ) ~  and g1 with boundary conditions 
on the surface of a sphere centred at r,, and such that (u), tends to the unper- 
turbed velocity (u) far from the sphere. We assume that rl is not near external 
boundaries. With the solution to this problem, we compute the stress at the 
surface of the sphere, and use this to find F((u)) from (2.32). The integral will 
be a functional of the unperturbed velocity (u) because of the boundary condi- 
tions on (u)~. This is not so simple, because the solution itself depends on =F, 
which is not yet known. Determining 9 is part of the problem. 

There is another difficulty that comes up here. In light of the approximations 
made, how should (T), at  the surface of the sphere be computed? Before we 
made any approximations, particle 1 was surrounded by a void region, and 
(T), was given by (2.29). In the new imagery, this void region is shrunk to zero, 
and we approach the solid boundary from the outside through the porous 
material. The question of what stress to use is related to the jump in stress 
across a discontinuity in porosity. We will find that for fixed spheres 

F((u)) = A(u)+BV2(u), 

and for suspensions of spheres S((u)) = BV2(u) + Cg. In  either case, (2.33) will 
have a term with an effective viscosity j, which differs from the fluid viscosity. 
We shall assume that the stress at  a solid inclusion is given by 

(2.34) 

using this effective viscosity. Brinkman made the same assumption. It will be 
demonstrated in $ 5  that this is consistent for a suspension of spheres, and it will 
be discussed further in appendix A in relation to systems with non-uniform 
porosity. 
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3. Comparison with the Brinkman formulation 
Brinkman (1947) considered the slow flow through a swarm of fixed stationary 

spheres of uniform number density n. In order to compute the resistance in the 
empirical Darcy equation 

0 = - vp -2  (u) + p g ,  (3.1) 

where Ic is the permeability, Brinkman proposed that the ‘resistance’ per unit 
volume, p(u)/lc, be computed from 

e(u)  = nD, 
k 

where D is the drag per particle.? The drag is to be computed from a Stokes- 
Darcy flow past a typical sphere, thus accounting for the presence of the other 
spheres. The problem is to solve 

div(u), = 0, 
(3.3) I 0 = - vpl + @V2(U), - payu>,, 

where ,& is an effective viscosity, arbitrarily chosen and pa2 = p/k. These are to 
be solved with boundary conditions (u), -+ U (a constant) as Ir - r,l+ co. From 
the solution the drag on the spheres is calculated from 

D = a2 (T), . PdP, (3.4) s rl fixed, r=r,+af 

with the stress calculated from (2.34) with the effective viscosity p. Thus 

D = 67r,&a( 1 + aa + Qa2a2) U. 

;$( 1 + aa + $a2a2) = a2a2, 

(3.5) 

(3.6) 

Using nD = ,Ea2U gives a quadratic equation for a:  

where $ = 4ma3n/3 is the volume fraction of spheres. The positive root of this is 
then used to calculate the permeability from Ic = p/jia2. It is noted from the 
quadratic that, for small q5, a2 = 9$/2a2, so for a dilute situation Ic = Ic,  = 2a2/9$, 
assuming that ,E + p as $ --f 0. (This is the same as calculating the resistance from 
Stokes drag.) The final result is presented as 

This depends explicitly on the effective viscosity, which is completely unknown, 
except it must tend to ,u when $ is small. Brinkman takes ,ii = p. 

The resulting expression agrees with experiments made on flow through ran- 
domly packed beds, but these are necessarily performed at very high volume con- 
centrations. Experiments for small and moderate $ are not completely satis- 
factory and are of two kinds. Measurements of flow through cubic arrays of 

0 = (1  - 9) ( - VF+P!4) + (1 - 9)llc(u>/kt 

t Referring to (2.13), it appears that, if (3.1) is written 

then the last term can be properly called the resistance per unit volume. Brinkman should 
have used (1  - $)k(u)/k = .nD instead of (3.2).  This gives a different result. 
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spherical beads on wires have been performed by Happel & Epstein (1954). 
While these are not randomly packed, they do agree quite well with the Brink- 
man formula, as seen in figure 1. There are also fluidization and sedimentation 
experiments which have random beds of spheres with the right concentration 
range, but these are not fixed beds. Experiments of this kind are not in good 
agreement with the Brinkman result. This will be discussed later. 

We want to compare Brinkman’s result with the corresponding result using the 
formulation of the last section but without calculating the effective viscosity. 
We will assume that the resistance term is directly proportional to the velocity. 
The moblem is to solve 

I 

(3.8) 
na2 

0 = -V~,+-V2(u) , - -  P (T),.fidfi. 
I - *  1 -+.lr,=r-ufi, r fixed 

Let ji = p/(l- q5) and assume 

na2 
(T), . fidii = j ia2(~), ,  13-91 mLufi. r fixed 

then the problem is the same as Brinkman’s except for the difference in computing 
the resistance and the different effective viscosity. At first sight one might think 
that, for uniform flow past a sphere, the drag integral and the average traction at  
a point should be the same, that the surface stress should be independent of the 
spatial position of the sphere. This is not true, because the pressure in the un- 
perturbed uniform flow is not uniform, but is given by 

Po = -jia2U.r. (3.10) 

A term like this contributes to the drag, 

p,(r)Fdf = a2 po(r,+aF)i.dP = -$na3jia2U, (3.11) J - J rI fixed, r =r,+a+ 

while the contribution to the mean traction at a point is zero: 

Fo(r) fidii = 0, (3.12) 

since the unperturbed pressure is independent of the location of the sphere. The 
velocity and the perturbation pressure, and hence the perturbation stress, are 
independent of the spatial position and contribute the same in each case. The mean 
traction at a, point is therefore found to be 

(T), . fidfi = 677jia[ 1 + aa + +a2a2] U - $njiaa2a2U, (3.13) 

the first term being Brinkman’s drag, the second the drag due to the unperturbed 
pressure?. When set equal to (1 - +) ,ka2U/n, the following quadratic equation re- 
sults : 4$( [ 1 + aa + Qa2a2] - +a2a2) = ( 1 - $) a2a2, 

which simplifies to give the same results as (3.6). Therefore the permeability is 
given by (3.7)) as before. We see that, if we use the same effective viscosity, we 

t We shall continue to call the integral in (3.13) the ‘ mean traction at a point ’, though it is 
really the mean traction times the area of a sphere. 

a2/rl=r-ua, r fixed 
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get the same result, despite the differing resistance calculations. However, the 
effective viscosity indicated in (3.8) is ,il = p/(  1 - #), so this result differs from 
Brinkman's. These results are compared in figure 1 (along with the modifica- 
tion suggested in the above footnote, which gives (3.7) with 4 replaced by 
$/( 1 - 4) .  It should be stressed that the effective viscosities used here are quite 
arbitrary. An elaborate calculation, performed in 6 4, will produce a rattionally 
determined effective viscosity. 

1 - d  

FIGURE 1. Permeability klk, or settling velocity V / V ,  in random bed of spheres V.S. void 
fraction 1 - $. B 1, Brinkman (1947) formula; B 2, modification of Brinkman formula aocord- 
ing to the first footnote to $3;  1, permeability calculated from (4.46) ; 2, settling velocity 
calculated from (5.40); 0, experiments of Happel & Epstein (1954). RZ, sedimentatinn 
experiments of Richardson & Zaki (1954) ; CS, ultracentrifuge experiments of Cheng & 
Schachman (1955). 

4. The flow through a fixed bed of spheres: calculation of the effective 
viscosity 

We shall consider the same problem as in 6 3, the flow through a random bed 
of fixed spheres of uniform number density. The procedure will be almost the 
same, except that we shall let the unperturbed flow be arbitrary instead of uni- 
form. If we assume that the resistance term is proportional to the velocity, as in 
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Q 3, and then compute either the drag or the mean traction at  a point, we get a 
linear combination of (u) and V2(u), evaluated at  the centre of the sphere in 
the former case, or at the fixed point in the latter case. That is, it does not come out 
as assumed. This suggests, and it is borne out by calculation, that the resistance 
is the sum of two such terms. Calculating the mean traction determines both 
coefficients. We shall find both a Darcy term and an effective viscosity. 

We anticipate 

(T),.fidfi = A(u)+BV2(u) = S((U)). (4.1) 
nu2.1r1=r-a5, r fixed 

We shall show that this is consistent, and determine A and B. With this assump- 
tion (2.3 31 becomes 

and call the unperturbed velocity field (u) = U and the unperturbed pressure 
plus gravitational potential ji - p g  . r = Fo. The unperturbed flow satisfies 

1 
0 = - vpo + p u  - pa2u.j 

divU = 0, 

With one sphere fixed we have, by assumption, 

div(u), = 0, 

0 = - V(p, -pg . r) + jV2(u), - pa2(u),, 

(4.5) 

to be solved with boundary conditions, (u), = 0 on r = rl + UP and (u), -+ U as 
. -  

I (u)l = u + u ,  r -+ co. Now let 

p , - p g . r  = po+p. 

divu = 0, 

Then, since U and po satisfy the same equations, we have 

I 0 = - vp + pv2u - jia2u, 

(4.7) 

with boundary conditions u = - U(rl + af) on the sphere, and u -+ 0 at infinity. 
With the solution of this we must compute 

(T), . i-idfi. 
a2S,  =ro -a&, ro fixed 

(4.9) 

(We shall let the fixed point be ro to avoid confusion with r, the running variable.) 
The stress due to the unperturbed flow contributes nothing to this, since the stress 
tensor a t  a point is independent of the orientation of the surface element. There- 
fore we can use 

The result of this calculation will be a linear combination of U(ro) and ViU(r,,), 
which will be substituted into (4.1), thus determining A and B. 
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Since the calculation is very lengthy, we have taken a number of notational 
shortcuts to organize the work. First, write the boundary condition at the 
sphere surface as 

u = -U(r,-uii+aF). (4.10) 

r,, ii and rl = r, - aii are fixed here, while F is the running normal to the sphere. 
This can be written as a symbolic Taylor expansion by 

u = - exp (a(@ - A). V,] U(r,) 

= -exp(-F.S)U,,U, = U(r,) = exp(ii.S)U(r,), (4.11) 

where the operator S = aV, operates on the ro dependence of U(ro). S will be 
treated as a constant until the very end, then it will be allowed to operate on 
U(ro). We note that, since divU = 0, S has the property S.U, = 0 and 
S . U(r,) = 0. This will be used repeatedly. Now, since S is to be treated as a con- 
stant, let it be the polar direction for spherical co-ordinates centred at the centre 
of the sphere. Take S = &AS', k a unit vector, then the boundary condition becomes 

u = -exp{-8cos0)Ul (4.12) 

at r = a. ris the radial co-ordinate, 0 the polar angle and /3 will be the circumferen- 
tial angle. The problem has been changed from one with an arbitrary function 
in the boundary conditions to one with a specific function. This could alter- 
natively be done by expressing U as a Fourier integral. 

Following Morse & Feshbach (1953), we use the following representation: 

u = -V  x r$,-V x (V x rk2), (4.13) 

where the position vector r is now centred at the sphere centre, r = rF. This 
automatically satisfies divu = 0 and will satisfy (4.8) if the scalars $, and $2 

are solutions of 

V2$, = a2$1, V2$2 = $0, V2$, = a2?bo, (4.14) 

$, being defined by the second equation. The pressure, given by 

P = - PWO - ."2 + r * V($O - a2$2)l, (4.15) 

satisfies V2p = 0 by virtue of (4.14). The functions $,, $,, ?b2 are functions of r ,  0, 
p but the p dependence may be separated out, eliminating the need for vector 
spherical harmonics, by noting that the solution must be linear in the arbitrary 
constant vector U,. This suggests the change of variables 

(4.16) 

selected, so that u will be a polar vector (Landau & Lifshitz 1959). The proof of 
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this is that the resulting velocity field can be made to 
conditions. The functions go, g l ,  g ,  must be solutions of 

satisfy the boundary 

(4.17) 

Substituting (4.16) into (4.13), and using (4.11), gives three boundary condiL' Lions 
inter-relating go, g,,  g 2 .  After re-arrangement, several of these may be integrated 
over the angle variable, and simplifj to 

1 1 z 
S S S 

(1 - 2 2 )  g l l rSa  = - - exp (82) +- cosh S + - sinh S ,  (4.18) 

1 
S2 S2 

(1 - 2,) g21r=a = - a(; exp {SZ} - - cosh S - 2 sinh 8) ,  (4.19) 

(4.20) 
sinh S 

(exp {SZ} - cosh S -  2 sinh 8) + (1 - 2') 7, 
s2 s 

where Z = cos 8. 
Solutions of (4.17) which tend to zero at infinity are 

(4.21) 

(4.22) 

(4.23) 

where the q(2) are Legendrepolynomials, aj, bi, ci are constants to be determined, 
and the Hj(ar) are modified spherical Bessel functions defined by 

(4.24) 

These series are substituted into the boundary conditions, and use is made of the 
orthogonality of the Legendre functions and the integral 

(4.25) 

to determine aj ,  b j ,  c j .  The function Gj, defined above, may be expressed as 

(4.26) 
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where jj is a spherical Bessel function and 4++ is a modified Bessel function. The 
coefficients are found to be 

(4.27) 

(4.28) 

The pressure may be expressed as 

P = POu1.r) 

m dP. j 
po = - p C ja2 c . 3 

j=1 dZ . 
(4.30) 

Now the difficult part of the calculation remains. Substituting (4.13) into 

(T), . F = -pF + p[F. VU + (VU) . P] (4.31) 

gives 

<T),.F = -poUl. i?Pf~ 

(4.32) 

On the surface of the sphere, this is of form 

where Q is a dyadic. To evaluate 

we must se: F, the running normal, equal to fi, the normal at  the point ro when 
the sphere is at  rl. Let 8,) Po be spherical co-ordinates for fi and note from (4.11) 
that U, = exp {fi. S} U(ro) = exp S cos 8 U(ro). Then the integral we want is 

aBJexp{S cos 0,) Q(O,, po).  u(ro) sin 8,deodp0. (4.33) 

Fortunately the integration on Po can be carried out while Q is in the form given 
by (4.32). Integrals like 

fi[fidpo.U(ro)] = .rrsin28,U(r0), s 
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which make use of k. U = 0,  can be evaluated. There remains substitution of the 
series forms and integration over 8,. The final result of this lengthy calculation is 

(T), . fidfi = ,ZaF(S2, aa) U(ro), (4.34) 

where 
W 

F(S2,aa) = n  2 ( - 1 ) j ( 2 j + l )  
j 

Hi(aa) Go(S)2. (4.35) Gj(S)2 + 6naa- 
W aa Hj,.,(aa) 

+87r 2 ( - l ) j ( j+l)  
j=1 Hj(aa) H,(aa) 

Now we interpret F as an operator operating on U(ro). Since S = aV,, we have 
S2 = a2V& As a temporary notation F can be written as a series, 

m m 

F(S2,aa) = C hjS2j = C hj(a2Vg)j 
j=O j=O 

(4.36) 

which operates on U(ro) term by term: 

F(S2,aa)U(r,) = hoU(ro)+h,V$U(ro)+h2V,4U(ro)+ ... . (4.37) 

Since U is a solution of (4.5) and V2p = 0,  we have 

1 ViU(ro) = a2VgU(r,), 

V!U(r,) = a4V$U(ro), 

and so on. This is an essential result, for then 

(4.38) 

= P(0, aa) U + F(a2a2, aa) - F(0, aa) q u .  (4.39) 
a2 

Thereforeusing (4.34) and (4.1) we have 

j h a  
F((u))  = pnaF(0, aa) (u) +- (F(a2a2, aa) -F(O, aa)) V2(u) 

a2 

= A(u) + BV2(u) (4.40) 

as was to be shown. Further, equating coefficients of (u) and V2(u), and using 
(4.3) and (4.4) for A and B, gives 

,GnaF(O, aa) = F(1- #) a2, 
,%a 
-(F(a2a2,au) -F(O,aa)) = p-(l -$)p,  
a2 

or simplifying, using jilp = M and eliminating n by using $ = 4na3n/3, we get 

3 ~ ( 0 ,  aa) = (I - 4) a2a2, (4.41) 
4n 

2 ~ ~ ( a 2 a 2 , a a )  = a2a2, (4.42) 
4n 
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two equations to determine M and aa as functions of 4, the volume fraction of 
solids. 

When S = 0, the series dehing F terminates at  one term, and we find 

P(0,aa) = 6r(l+aa+&a2a2).  (4.43) 

When S2 = a2a2 we can also simplify somewhat, since the arguments of the 4. and 
G, functions are the same. With the identity Gj H,+l + G,+l Hi = - l/a2a2 we get 

m m 

F(a2a2, aa) = - 277 C ( - l)j(2j + 1)2 Gj(aa)2- 8n C ( - l)j (j + 1) 
j=1 j=1 

Gi(aa) )+6n(l+aa)(-) sinhaa . (4.44) 
aa aaGj(aa) G,+,(aa) + aaHj (aa) 

With P(0,aa) given above, (4.41) gives the same quadratic equation for aa 
that obtained by Brinkman, (3.6), so aa is given by 

$4 + Q( 8 4  - 342) aa = 
1 - 8 4  - 

Also, the permeability is given by (3.7): 

k 1  
-=- ( 1 + ~ - ( 8 # - 3 ~ ) ~ 1 ) ,  
k, M ( $ )  

with the effectiveviscosity M(q5) obtained from (4.421, 

M(’) = 3 4P(a2a2, aa) 3 

477 a2a2 

ola being a function of q5 through (4.45). 

(4.45) 

(4.46) 

(4.47) 

I I I I I 

0 0.1 0.2 0.3 0.4 0.5 

4 
FIGURE 2.  Effective viscosity ,C/p in a random bed of fixed spheres versus the volume fraction 
of spheres 4. 1, calculated from (4.47); 2, calculated from l / ( l - 4 ) ;  3, calculated from the 
Einstein result 1 + 2-54. 
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These functions have been computed. The function M ( $ )  is shown in figure 2. 
As suspected by Brinkman, it is not always greater than one, in fact it decreases 
rapidly when # > 0.3. This is a source of difficulty, since the resulting permea- 
bility shown in figure 1 follows the Brinkman result fairly closely, and then 
suddenly diverges from it where the viscosity becomes small. It is felt that this 
occurs because of the approximations made. Neglecting the inpenetrability of 
the particles is an approximation which becomes worse as the particles become 
more crowded. It is not surprising that there is an effect at  a volume concentra- 
tion of 30%, since the average distance between particle centres is only 1-25 
diameters. I n  order to get a valid result at  higher concentrations, it would be 
necessary to account for the void sphere around each particle. 

The significant result of this section is the theoretical justification for the 
equations div(u) = 0, 

0 = - vji + pvyu)  + p/k(u), 

describing the flow through porous media. It was pointed out by Tam (1969) 
that, whenever the spatial length scale is much greater than l/a (a defined by 
p / k  = /iia2), the V2(u) term is negligible. For large systems this means that 
Darcy’s law 

is valid outside of boundary layers of thickness l/a. 

0 = -Vji++/k(u) 

5. The viscosity and settling velocity of a suspension of spheres 
The method used in $ 4  accounts for the effective viscosity in the flow through 

a bed of fixed spheres, which suggests using the same method to determine the 
effective viscosity of a suspension of spheres. This problem is more interesting 
because of the classical result of Einstein (1906, 1911) for dilute suspensions, 

M = 1+2*5$+ .... 
We shall present a generalization for moderately large 6.  

As in the previous sections, we have an ensemble of systems of spheres with 
centres at ri, i = 1’2, . . . , N .  Let Ui be the velocity of the centre of the i th sphere 
and Qi its angular velocity. The velocity of any point r in the ith sphere is 
Ui +ai x (r - ri). The quantities Ui and 8, are functionals of the positions of the 
other particles determined by the conditions that the torque produced by the 
hydrodynamic tractions be zero and the force produced by the tractions be 
balanced by the weight of the particle $na3pSg, where ps is the mass density of 
the solid particle 

As before, we assume that the ensemble average velocity satisfies 

1 div(u) = 0 ,  

and the sub-ensemble average velocity with particle 1 fixed satisfies the same 
equations. Let V(r,) and Q(r,) be the average velocity and average angular 

19 F L M  5 1  
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velocity of particle 1. They are calculated from force and torque balances 
using the average traction (T),.F. The boundary condition ( u ) ~  = V+aF xS2 
on r = r, + a l  is obtained by averaging with the particle fixed. The complete 
statement of the problem for (u,) is 

1 div ( u ) ~  = 0, 

to be solved with boundary conditions 

( u ) ~  = V + a i . x a  on r = rl+aP,\  

( u ) ~  + (u) at infinity, I 
with V and related to (ul) by the two conditions 

i. x (T),.PdP = 0,  4 r, fixed, r=r,+al 

(T) , .PdP+p,s$~~3g = 0, 

and the functional S((u))  is related by 

where 

(5.3) 

The key to solving this problem, as with the stationary sphere problem, is to 
anticipate what form %-((u)) should have. We might try A((u)- V )  +BVZ(u) 
(i.e. a resistance proportional to the relative particle velocity), but this relative 
velocity turns out to be the sum of terms proportional to V2(u) and to g. Antici- 
pating this, we assume 

S((u))  = BVZ(u) + cg. (5.7) 

Then (u), must satisfy 

where (5.9) 

is the effective viscosity. This is just Stokes's equation, so the problem is actually 
a little easier than for stationary spheres. 

(5.10) 
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be the unperturbed velocity and pressure. Let 

Then 

(5.11) 

(5.12) 

with boundary conditions 
u -> 0 at infinity, } (5.13) 

u = V(r,) +aQ x Q(r,) - U(r,+ a?) on the sphere. 

With the solution we need to calculate the integrals in (5.4), (5.5) and (5 .6 ) .  
We will solve this problem as the superposition of the three problems (i), (ii), 

(iii), below, where the boundary condition on the sphere consists of each of the 
three terms in (5.13) separately. 

(i) The case where the boundary conditions are 

u + O  as r-+co, 

u = V(r,) (a constant) on r = r,+aQ, 

is given by Landau & Lifshitz (1959) as 

u = V x (V x f ( r )  V), 

with 

and 

a3 
f = - fur -$ -  

r ’  
3 a  

p = -- “V.r  
2rz’ 

The traction on the surface due to this part of the perturbation field is 

A 3E“V (T)l.r = -- 
2a 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

We calculate the contribution of this traction to each of the three integrals we 
need. The contribution to the torque integral (5.4) is clearly zero. The contribu- 
tion to  the force (5.5) is 

(T), . Fd? = .- 6npaV(r,). (5.18) 

The contribution to the stress at  a point in (5.6) is more difficult, since r, is not 
fixed in this integral, therefore V(r,) will vary. We write 

a2s r, fixed, r=r,+u? 

V(r,) = V(ro- afi) = exp{ - S .fi}V(ro) with S = aV, 

as before. Then 

(T),.fidfi = a2 expi-S.fi} 

(5.19) 
sinh S 

x VPOL 

azjr,=ro-uii, c0 fixed s 
= - 67~jZa- 

19-2 
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It will be shown later that V4V = 0, therefore, since S2 = a2V& we need only ex- 
pand the above function of S2 in power series up t o  terms in S2, all higher powers 
giving zero when they operate on V(ro). We get 

(T)l.fidfi = - 6npuV(r,) -r,iiu3V;V(r,). (5.20) 
a2!r,=ro-ofl, r,fixed 

(ii) The solution to (5.12), with boundary conditions 

u + O  as r + m ,  

u = aFxS2(r1) on r = r,+aF, 

is also given by Landau & Lifshitz (1959). It is simply 

a3 

r2 
u = -S2(rl) x F, (5.21) 

and the pressure is zero. The traction at  a point on the sphere is 

(T), . f = - 3,ii8(r1) x F. 

The contribution to the torque integral (5.4) is 

P x (T),.PdP = - 8r,Ga38(r1). (5.22) 

The contribution to the force (5.5) is zero, but there is a contribution to the mean 
traction at a point. Writing B(r,) = Q(r, - afi) = exp { - S . fi)Q(r,) we have 

u3s r, fixed, r=r,+a? 

(T), . ndn = - 3,Ga2 exp { - S . fi} 8(r,) x fidfi s 
(5.23) 

1 d sinhS 
= - 12pa2--- S x S2(ro). 

SdS s 
Again we shall use a result which will be obtained later. That is S2 = $0 x U. 
Then S x S2(rl) = QaV, x (V, x U(r,)) = --&aV;U(r,) since div U = 0. Now, 
since V W  = 0, a power series expansion in S2 gives 

(T), . fidfi = 2npa3v; U(ro). (5.24) 
a2JrI=ro-afi, r, fixed 

(iii) The problem with boundary conditions 

u + O  as r + m ,  

u = -U(r,+aF) on r = r l+uf  

is, of course, much more difficult than the above two problems. Much of the 
analysis with stationary spheres of $ 4  can be adapted to this problem by putting 
a = 0 there. The contribution to the torque integral (5.4) is 

P X  (T),.FdF = S,x u(r,), (5.25) 
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where S ,  = aV, comes in from U(r, + a*,) = exp { S , .  P} U(rl). When the function 
of S,  is expanded, interpreted as an operator, and V2 (V x U) = 0 is used, we find 

(5.26) P x (T),. ?dP = 4n-ja3V1 x U(rl). 

Similarly, the contribution to the force on the particle is 

2 d d2 sinhS, 
(T),.PdP = 6 n j a  

= 6nfia(U(r,) + $a2V~U(r,)). (5.27) 

The mean traction at  a point can be obtained from (4.34) by setting a = 0. 
It has also been obtained by an independent calculation, by which means it is 
easier to obtain than (4.34). (This serves as a check on both results.) The result is 

r 
(T)l.fidii = jaF(S2, 0 )  U(r,) uzJ rl=ro-at ,  ro fixed 

= 6nfiaU(r0) - 2n,ka3VgU(ro). (5.28) 

The last line comes from the first two terms in the power series expansion of 
F(S2, 0), since higher powers operating on U(ro) give zero. 

In order to put all these results together, we need, additionally, the contribu- 
tions of the unperturbed stress and gravitational terms to the torque and force, 
the contribution to the mean traction at  a point being zero. The torque due to the 
unperturbed stress is zero by conservation of angular momentum, therefore we 
can substitute the contributions of (5.22), and (5.26) into (5.4), getting 

c2 = i v x u ,  (5.29) 

the result that was needed in (ii) to complete (5.24). This result, and (5.31) below, 
may be deduced from Faxen’s formulae (Happel & Brenner 1965). 

The contribution of the unperturbed stress and gravity to the force on the 

C particle is found to be 
(5.30) 

this being an effective buoyancy. A second term resulting from the unper- 
turbed stress is zero by conservation of momentum. When this term is added to 
(5.18) and (5.27), and the weight of the particle is as indicated in (5.5), the final 
result is 

C 
(ps-p +-) $na3g - 6 n j a  (V - U) + n,ka3V2U = 0. (5.31) 

This formula gives the particle velocity V in terms of U. Since divU = 0, it 
follows that divV = 0. Also, since V4U = 0, it follows that V4V = 0, a result 
needed to get (5.20). 

The mean traction at a point may now be found by adding the results of prob- 
lems (i), (ii) and (iii), (5.20), (5.24), (5.28), after using (5.31) to eliminate V. It 
is 

C 
+n-u3g-2nja3V~U(r0). (5.32) 
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Therefore, using (5.6) and (5.7), we have 

= C g - t B V y u ) ,  (5.33) 

as anticipated. With B = p - (1 - q5) p, qi = 977a3n, we equate coefficients of g 
and V2{u), finding 

c = - W - $ ) ( A - P )  (5.34) 

and (5.35) 

‘ 0  0.1 0.2 0.3 0.4 0.5 

6 
FIGURE 3. Effective viscosity P/,u of a suspension of spheres 2)s. the volume fraction of spheres 
y. __ , calculated from (5.35) ; - -, calculated from Happel’s (1957) free-surface theory. 
A, experiments of Vand (1948), (S  stirred, U unstirred); 0, experiments of Williams 
(1353); ---- , experiments of Cheng & Schachman (1955). 

The latter result for the effective viscosity is really quite remarkable.? For small 
Q it gives @/,u = 1 + $$. . . , Einstein’s result. Our expression becomes unbounded at  
q5 = 0.4, which is dearly incorrect. However, when compared with measure- 
ments of Vand (1948), Williams (1953) and Cheng & Schachman (1955) in figure 
3, it is seen bhat the agreement is quite good for q5 < 0-35. In fact, this is about 
the limit for which oiie could expect the composite to behave like a Newtonian 

f Uudiansky (1965) has derived an expression for the shear modulus of a composite solid, 
which is equivalent to (5.35) by a ‘ self-consistent’ analysis similar to  Brinkman’s. The exact 
analogy between Stokes flow and linear elasticity is described by Hashin (1970). 



Slow flow through random beds of spheres 295 

fluid, since Vand notes a difference due to stirring the mixture at  9 = 0.4, as if 
particle contact were playing a role. Also, both Vand and Williams note viscosity 
ratios in excess of 200 at q5 = 0.5, though not consistently. Equation (5.35) has 
been proposed by Ford (1960) on empirical grounds, comparing with the data of 
Vand and others. (A similar formula was proposed much earlier by Hess 1920.) 
Included in figure 3 is Happel’s (1957) free-surface theory. 

With C given by (5.34), (5.1) for the unperturbed velocity become 

1 div(u) = 0, 

0 = - vm+/%vyu) +pg, 
(5.36) 

where p = #p, + (1 - q5) p is the mean density of the composite material. The last 
term is clearly a proper gravitational body force for the composite. From this 
equation we can show the consistency of using the effective viscosity when 
calculating stress at  a solid boundary. Consider Poiseuille flow in a vertical pipe 
of radius R with a pure gravitational driving term. Integrating (5.36) over the 
cross-section of the pipe, with constant, gives 

(5.37) 

That is, the weight of the fluid is balanced by a wall shear stress with an effective 
viscosity ji. 

Equation (5.31) for the particle velocity is also of some interest. Using C from 
(5.34), this can be written 

(p, - p )  tna3g - 6n/%a(V - (u)) + r/%a3V2(u) = 0. (5.38) 

The first term is the weight of the particle minus its buoyancy in the composite 
material, the second is the Stokes drag, with the composite viscosity, as it moves 
relative to the composite velocity. The third is the drag due to the non-uniform 
velocity field. Since the motion of the composite material is determined indepen- 
dently from (5.36), this gives the settling velocity V after u has been found. Since 
divV = 0 there is no tendency for particles to accumulate anywhere. Uniform 
number density will persist. 

For zero composite flow the settling velocity is 

(5.39) 

a result which was derived by Kynch (1959) on intuitive grounds. Noting that 
p,-p = (1 - q5) (p,-p), and using /% = p/(l -;#), this can be presented as 

v/v, = (1--9)(1-;$), (5.40) 

where V, is the settling velocity when q5 = 0. 
The settling velocity is sometimes estimated from the flow through a stationary 

bed of spheres, using Darcy’s equation for the flow resistance. Noting that the 
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resistance per unit volume in Darcy’s equation (1 - 9) pV/k  ( B the relative velo- 
city) equals the weight of the particles minus their buoyancy, 

(1 - 4) (P, - P )  37asn9, 
we get v/v, = k/k,, (5.41) 

k, being the permeability for the dilute case.? We have plotted V/V, from (5.40) 
in figure 1, in order to compare it with k/k, for stationary spheres. We have in- 
cluded in this figure the pertinent experimental results for settling velocity. The 
results of Richardson & Zaki (1954) for low Reynolds number sedimentation of 
glass spheres are fitted by V/V, = (1 - 4 ) 4 ’ 6 5 .  This fits our result fairly well. Also, 
the measurements of Cheng & Schachman (1955) for ultracentrifuge settling of ex- 
tremely small polystyrene latex particles for small 4 agrees well with our expres- 
sion. Obviously there is considerable difference between the settling velocity 
result given by (5.40) and that given by the modified Brinkman result. The 
settling velocity for the suspension being larger than for the fixed bed of spheres. 

6. Discussion 
It has frequently been noted in the literature (citations in Davidson & Harrison 

1963) that a fluid experiences a lower resistance in flow through a fluidized bed 
than through a fixed bed of similar material and the same porosity. That is, V/Bo 
is larger for the fluidized bed, as we have found. The difference has been ascribed 
to various effects, such as slow internal circulation of the particles in the bed, 
tunnelling, formation of bubbles, aggregation. While all of these probably con- 
tribute to the phenomenon in practice, we see an appreciable difference in the 
results of the present analysis without any such effects. Since we have flow 
through two systems of randomly distributed particles, one fixed the other free, 
both analysed with similar approximations, it would appear that it is merely the 
added constraint in the fixed bed which increases the resistance. 

A pair of particles settling side by side, each free to rotate about its centre, will 
settle faster than a pair which are prevented from rotating. Similarly, the drag 
on a sphere among randomly located spheres will be less if the sphere is free to 
rotate and adjust to the flow fields of the other particles. I n  the above reasoning, 
it is important that the spheres be randomly placed, or at  least irregularly placed, 
for there would be no tendency to rotate in a regular cubic array. In  our analysis 
of the motion of a single particle, the effects of other particles are averaged and 
only felt as part of the response of the composite fluid, so the direct effects de- 
scribed above are masked. Nevertheless, it  is clear that, if one repeated the 
analysis of $5 with the particle free to settle under gravity but constrained so 
that the angular velocity 8 is zero, the effective viscosity would be greater and 
the settling velocity smaller. In  fact, it is easy to check through the calculation 
Of  $ 5 with 8 = 0 ,  finding pip = 1/(1-4+), (6.1) 

V/V, = (1--$)(1-44). (6.2) 
t An alternate derivation notes that in Darcy’s equation for uniform vertical flow, 

0 = -dp/dz-pV/k--pg, the pressure gradient must balance the weight of the composite 
material, i.0. dp/dz  = - p g .  Eliminating dp/dz gives (5.41). 
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When q5 = 0.1, the settling velocity is 20 yo smaller than that given by (5.40) in 
the free case. The modified Brinkman results gives an even smaller settling 
velocity than this because of the additional constraint on the particle velocity. 

It is felt that this paper has satisfactorily tied together, in one theory, Darey’s 
law for the flow through porous media with a law for the effective viscosity of 
suspensions (to call this Einstein’s law is too restrictive). In  both cases, the results 
are limited to moderate values of the volume fraction of solids. However, the 
theory gives a tenfold variation in both permeability and viscosity, hardly a first- 
order effect. To extend the results to higher concentrations requires modification 
of the basic approximations made, since the resulting analysis was exact. Thus, 
it would be necessary to account for the mutual impenetrability of the spheres, 
and also, probably, the friction between spheres for suspensions. 

The methods used here should be applicable to many other situations. It should 
be possible to treat suspensions and fixed beds of spheres of different sizes (see 
note added in proof below). It should be possible to treat suspensions of spheres 
with applied torques, giving a constitutive equation with a non-symmetric stress 
tensor. It should be possible to account for small compressibility of the particles 
and fluid. It might be possible to apply the method to suspensions of non- 
spherical particles, but probably only for small q5. 

This work was supported in part by the National Science Foundation under 
Grant GK 13,303, which is gratefully acknowledged. The computational work 
was performed by Mr Francis Wang on a Control Data 6600. 

Appendix. Tentative treatment of non-uniform porous materials 
We have, by (2.13), 

0 = - V( 1 - 4) 8 +pV2(u) - (T. VH), (A 1) 

neglecting gravitational terms for the present argument. It was observed by 
Saffman (1971) that, for non-uniform porosity and no flow (qj = -pcJj, con- 
stant) the last term is 

This suggests that, in addition to the terms A(u) + BVz(u) which equal (T . VH) 
in the uniform case, there should be other terms proportional to V( 1 - 4). It 
would be consistent for the additional terms to combine in such a way that 

(T.VH) = -pV(H) = -pV(l-q5). (A2) 

0 = V.(-p1+2j iD)- - (~) ,  P 
k 

with p(q5) = ( p - B ) / (  1 - q5) and A / (  1 - q5) = p / k  the same functions of non- 
uniform q5 as in the uniform case. If such a form were valid for non-uniform q5 
we could integrate it over a small pill-box shaped region which covers both sides 
of a discontinuity in q5. Using the divergence theorem, and shrinking the volume 
to zero (so that the volume term disappears), we get the ‘traction’ ( - 81 + 2,ZD). ii 
continuous across this interface. This can be applied to the stress calculation at  
a solid inclusion in a region of otherwise uniform porosity. Assume that there is a 
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very thin boundary layer of pure fluid (porosity unity) between the solid and the 
porous material. The traction on the solid is then ( -PI + 2pD). fi, and this may 
be computed from ( - jiI + 2fiD). fi outside the boundary layer, the two quantities 
being equal by continuity. 
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Note added in proof. The effect of particle size distribution for suspensions of 
spheres turns out to be quite easy. Let P(a)  da be the probability that a particle 
has radius between a and a + da, then nP(a) cla is the expected number of par- 
ticles per unit volume with radii in this range. The functional F({u)) given by 
(5.6) is modified to 

F((u)) = S n W )  da { a f  - (T), . fi d f i ] ,  
i-ro-u?z,ro fised 

replacing n by nP(a) da and integrating over all a. That is, we calculate the mean 
traction for particles of radius a and then average over particle sizes. The calcula- 
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tion for particles of one size proceeds through (5.33), which is then modified by 
the above replacement. It is noted that since a occurs in this equation only as 
a3 and the volume fraction of solids is defined by 

f$ = 4 a 3 P ( a )  da, 

we get (5.34) and (5.35) as before. The only effect of the size distribution is the 
modification of #. The particle velocity V however, depends explicitly on particle 
size and is still given by (5.38) or (5.39), particles of different sizes settling at  
different rates. 


